End-to-End Fingerprints Liveness Detection using Convolutional Networks with Gram module

نویسندگان

  • Eunsoo Park
  • Xuenan Cui
  • Weonjin Kim
  • Hakil Kim
چکیده

This paper proposes an end-to-end CNN(Convolutional Neural Networks) model that uses gram modules with parameters that are approximately 1.2MB in size to detect fake fingerprints. The proposed method assumes that texture is the most appropriate characteristic in fake fingerprint detection, and implements the gram module to extract textures from the CNN. The proposed CNN structure uses the fire module as the base model and uses the gram module for texture extraction. Tensors that passed the fire module will be joined with gram modules to create a gram matrix with the same spatial size. After 3 gram matrices extracted from different layers are combined with the channel axis, it becomes the basis for categorizing fake fingerprints. The experiment results had an average detection error of 2.61% from the LivDet 2011, 2013, 2015 data, proving that an end-to-end CNN structure with few parameters that is able to be used in fake fingerprint detection can be designed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolutional Networks on Graphs for Learning Molecular Fingerprints

Predicting properties of molecules requires functions that take graphs as inputs. Molecular graphs are usually preprocessed using hash-based functions to produce fixed-size fingerprint vectors, which are used as features for making predictions. We introduce a convolutional neural network that operates directly on graphs, allowing end-to-end learning of the feature pipeline. This architecture ge...

متن کامل

Crop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images

Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...

متن کامل

Patch-based Fake Fingerprint Detection Using a Fully Convolutional Neural Network with a Small Number of Parameters and an Optimal Threshold

Fingerprint authentication is widely used in biometrics due to its simple process, but it is vulnerable to fake fingerprints. This study proposes a patch-based fake fingerprint detection method using a fully convolutional neural network with a small number of parameters and an optimal threshold to solve the above-mentioned problem. Unlike the existing methods that classify a fingerprint as live...

متن کامل

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018